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Abstract G (k) =F (k) +Q (k)

Visual models are increasingly being incorporated in digi- It is well established that the shape of the quantization
tal halftoning algorithms. With the variety of visual mod- error spectrum affects the perceived quality of the halftone
els available, algorithm designers must select one that is By explicitly constrainingQ(k) with visual models,
consistent with desired results and computational requirave can directly assess the effects of different frequency
ments. In order teelect the most appropriate visual model,domain characteristics. In this paper, we report on two
it is important to gain an understanding of the visual effectslasses of constraints. First we apply constraints based
of the different visual models on the halftone output. Thisolely on established image-independent visual models
work compares the effects of several single-channel visuah order to compare bandpass versus loupes characteris-
models on halftone output by using an iterative techniquécs. Next, we introduce an image adaptive technique that
that explicitly shapes the quantization error in the Fouriepreserves perceptually important high frequencies with-
domain. By operating on the spectrum of the quantizatioout sacrificing the desirable effects of visual model based
error, we are able to directly apply a visual model as &onstraints on halftoning algorithms.

threshold function. Our results clearly indicate that low-

pass visual models produce much better quality halftones Methods

than conventional contrast sensitivity function models.

This method also provides insight into the effects of conThe algorithm used to generate the halftones is an itera-
straining error in individual bands of a multichannel vi- tive Fourier transform technique described by Broja and
sual model. In addition, we introduce a technique thaBryngdahl? In this technique, the input grayscale image
combines filters to shape the error spectrum in a way thas halftoned with a pseudo-random threshold function.
preserves perceptually important high frequencies withThe spectrum of the original imadggk) is then modi-

out sacrificing the desirable attenuation of low frequen{ied to produce the spectrum of the input grayscale im-
cies. The combination of filters can be implemented in amge to the next iteratioR,,(k).

image adaptive manner by using the spectrum of the It is the filtering of the error spectrum where we
grayscale image or in an image independent manner gcus our attention. Each input grayscale is generated
using weighted combinations of multiple channel filters.from modification of the error spectrum, formally

Introduction Fiia(k) = Fi(k) + Q(k)*H(k)

Visual models are increasingly being incorporated inwhere * represents convolution adk) represents the con-
digital halftoning algorithms. A wide variety of visual straints on the error spectrum. We consider two distinct for-
models have been defined. Quantitative studieticate  mulations ofH(k). First,H(k) is the transfer function of a
that choice of visual model is important in generatingvisual model. By modifying the visual model represented
error metrics to assess halftone quality. This implies thaby H(k), we can observe the effects of different visual mod-
the choice of visual model for designing a new halftoningels. Second{(k) represents a two level cascade of filters,
technique is also a non-trivial issue. In order to choos¢he first of which represents an image-independent visual
an approriate model, an algorithm designer must gaimodel and the second of which is an image-dependent fil-
an understanding of the visual effects of the differenter which restores perceptually important high frequencies.
visual models of the halftone output.
It has been showirthat the spectrum of the quanti- Results
zation noise of a halftone is
In order to assess differences in visual models, we begin
Qk)=G(K)-F (k) by selecting a widely used contrast sensitivity function in-
troduced by Mannos and Sakrisbmhis function is de-
wherek = (k,I) are discrete sampling points in the spectrunfined in cycles per degree and obtains its peak value at about
plane ands (k) is the spectrum of the halftone image &nd 8 cycles per degree. Since we are working to minimize vis-
(k) is the spectrum of the input grayscale image. Reformuble error, we invert the contrast sensitivity function so that
lating this shows that the spectrum of the binary image is it reaches its minimum value at 8 cycles per degree. By
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filtering with an inverted form of the contrast sensitivity ent goal. The first level is simply a lowpass visual model
function, we shape the quantization error spectrum so that described above. While this achieves the attenuation of
errors are reduced where the eye is most sensitive and \v-frequency error that is well accepted as undesirable
allow errors to pass where the eye is least sensitive. This halftones, it allows unconstrained error in the high fre-
has the effect of minimizing changes to the originalquencies. This is a problem because there are some im-
grayscale image in frequencies where the eye is most seages in which the high frequencies provide perceptually
sitive and allowing quantization error energy to remainmportant information, For example, the periodicity of the
where the eye is least sensitive. Figure 1(c) is an intensitines in a brick wall provide important information to an
representation of the inversion of the contrast sensitivitpbserver. Minimizing error in just low frequencies will
function. The brightest intensity represents a value of 1.0reduce errors in the representation of each brick surface
the dark values represent zero value. As seen from the brightit will degradation of the lines which serve to distin-
intensities near the center of the figure, much low-frequencguish the wall as one made of bricks.
energy is allowed to remain from the quantization error.  An image adaptive method to preserve distinguish-
The familiar “lena” image was the original grayscale inputing high frequency information is achieved by extend-
for the first iteration. Figure 1(b) is the halftone that wasing H(K) is extended to include a second filter. The
produced after modifying the input grayscale with the fil-second filter is generated from the inversion of the nor-
tered quantization error using the Mannos and Sakrisomalized spectrum of the grayscale image. Where the
contrast sensitivity function seen in Figure 1(a). original spectrum has peaks, indicating distinctive fea-

Next, we modified the Mannos and Sakrison func-tures, the second level filter has valleys, which will serve
tion to be a low-pass filter as described in [1]. That is, weo attenuate errors at the specific frequencies that char-
“flattened” the peak by setting the function to its maxi-acterize image features. This is illustrated graphically
mum value at all frequencies lower than the peak frein Figure (2). For simplicity, only a single slice of the
guency. Again, after inverting the function as describedmage spectrum is depicted.
above, the filter applied to the quantization error is shown
as in intensity image in Figure 1(c). The halftone pro-
duced with this modification is shown in Figure 1(d).

Figure 2. From left to right and top to bottom: (a) normalized
grayscale spectrum (b) second-level filter (c) first-level
lowpass filter (d) combined effect of both filters with attenua-
tion in all low-frequencies and at distinctive peaks.

To illustrate the effects of constraining some high
frequency error in an image adaptive manner, we applied
the iterative Fourier technique to the picture of the rings
of a tree. We tested three cases as illustrated in Figure

& (3). Figure 3(a) is the original grayscale image of a cross

Figure 1. From left to right and top to bottom: (a) inverted section of a tree. Figure 3(b) shows the results of using

CSF filter (b) halftone output using inverted CSF filter just a lowpass visual model error constraint. Figure 3(c)

(c) inverted low-pass modified CSF filter (d) halftone outputshows the results of bypassing the lowpass visual model
using inverted low-pass modified CSF filter. and filtering the error with the inversion of the normal-

ized power spectrum of the image. Figure 3(d) shows

Comparing the two results shown in Figures 1(b)the results of combining the filters used in Figures 3(b)
and 1(d) clearly shows improvement by using a low-pasand 3(c). Specifically, the lowpass visual model con-
filter rather than a bandpass-type conventional contrastraint was cascaded with the second level filter con-
sensitivity function. These result also indicate that thestructed from the grayscale power spectrum. The second
iterative Fourier transform method is a good vehicle folevel constrains image-specific high frequencies. The
assessing the effects of different visual models. poor quality of 3(c) indicates that attenuation of low-

Next, we extended the conceptt(k) to a two-level frequencies is important to overall halftone quality. The
cascade of filters, each level designed to achieve a diffemmproved quality of 3(d) indicates that halftones can be
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improved by constraining some high frequency errormuch more appropriate than a conventional bandpass-
High frequency error can be reduced in an image inddike visual model for halftoning applications. Since the

pendent way by constructing(k) from weighted com-

iterative Fourier technique allows explicit control of the

binations of individual channels in a multichannel modelquantization error spectrum, it can be a powerful tool
of vision.

Figure 3. From left to right and top to bottom: (a) grayscale

image of tree (b) halftone produced with error constrained only

by first level filter (¢) halftone produced with error constrained

only by second-level filter (d) halftone produced with error 2.

constrained by both first and second level filters.

for assessing the effects of various visual models in half-
tone algorithms. It can be used to assess the effects of
single channel models and the individual channels of
multichannel models. A new image-adaptive method is
introduced which preserves perceptually important high
frequencies without sacrificing the desirable effects of
constraining error with a lowpass visual model. This is
accomplished with a two-level cascade of filters, one
level designed to support the lowpass nature of the vi-
sual system and the other level designed to restore high
frequency information that characterizes the image. The
improved results of the two-level filter indicate that for
some images, constraining error at some high frequen-
cies improves image quality. High frequency error can
be reduced in an image independent way by construct-
ing a cascade of filters from weighted combinations of
individual channels in a multichannel model of vision.

*  This work was supported in part by the National Science
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